Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research (Deemed to be University)

NAAC Re-accredited Grade "A+"

Curriculum of General Aptitude for AIPHDCET under DMIHER (DU)

Content:

Curriculum of General Aptitude for AIPHDCET, DMIHER (DU)

S. N.	Title
1	Verbal Aptitude, Quantitative Aptitude, Analytical Aptitude
	and Spatial Aptitude

Detailed Content

(Weightage = 15%)

Verbal Aptitude:

Basic English grammar: tenses, articles, adjectives, prepositions, conjunctions, verb-noun agreement, and other parts of speech Basic vocabulary: words, idioms, and phrases in context reading and comprehension narrative sequencing.

Quantitative Aptitude:

Data interpretation: data graphs (bar graphs, pie charts, and other graphs representing data) and 3-dimensional plots, maps, and tables.

Numerical computation and estimation: ratios, percentages, powers, exponents and logarithms, permutations and combinations, and series Mensuration and geometry Elementary statistics and probability.

Analytical Aptitude:

Logic: deduction and induction, Analogy, Numerical relations and reasoning.

Spatial Aptitude:

Transformation of shapes: translation, rotation, scaling, mirroring, assembling, and grouping paper folding, cutting, and patterns in 2 and 3 dimensions.

References:

1. Dr. R.S. Aggarwal, A modern Approach to Logical Reasoning S. Chand Publisher, 2018

2. P.N. Arora and S. Arora, *Quantitative Aptitude Mathematics*, S. Chand India Publication.

3. Dr. R.S. Aggarwal, *A modern Approach to Verbal and Nonverbal Reasoning* S. Chand Publisher, 2018

4. Abhijit Guha, *Quantitative Aptitude for All Competitive Examinations*, McGraw Hill Publication.

5. Dr. R.S. Aggarwal, Quantitative Aptitude S. Chand, 2013

Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research (Deemed to be University)

NAAC Re-accredited Grade "A+"

Curriculum of Physics for AIPHDCET under DMIHER (DU)

(Theme based)

Content:

Curriculum of Physics for AIPHDCET, DMIHER (DU)

Theme	Title
1	Mathematical Physics and Electrodynamics
2	Classical and Quantum Mechanics
3	Solid State Physics & Electronics
4	Thermodynamics and Statistical Physics
5	Atomic, Molecular, Nuclear and Particle Physics

Theme 1: Mathematical Physics and Electrodynamics

Vector calculus: linear vector space: basis, orthogonality and completeness; matrices; similarity transformations, diagonalization, eigenvalues and eigenvectors; linear differential equations: second order linear differential equations and solutions involving special functions; complex analysis: Cauchy-Riemann conditions, Cauchy's theorem, singularities, residue theorem and applications; Laplace transform, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensors.

Solutions of electrostatic and magnetostatic problems including boundary value problems; method of images; separation of variables; dielectrics and conductors; magnetic materials; multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection and transmission at normal and oblique incidences; polarization of electromagnetic waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Theme 2: Classical and Quantum Mechanics

(Weightage 17 %)

Lagrangian formulation: D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle, calculus of variations; symmetry and conservation laws; central force motion: Kepler problem and Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body dynamics: interia tensor, orthogonal transformations, Euler angles, Torque free motion of a symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical transformations: action-angle variables, Poisson brackets, Hamilton-Jacobi

Special theory of relativity: Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac Bra-Ket notation, linear vectors and operators in Hilbert space; one dimensional potentials: step potential, finite rectangular well, tunneling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular momentum and spin; addition of angular momenta; variational method and WKB approximation, time independent perturbation theory; elementary scattering theory,

Born approximation; symmetries in quantum mechanical systems.

Theme 3: Solid State Physics & Electronics

(Weightage 17 %)

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, intra- and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity; magnetic properties of solids; dia, para, ferro, antiferro and ferri-magnetism, domains and magnetic anisotropy; superconductivity: Type-I and Type II superconductors, Meissner effect, London equation, BCS Theory, flux quantization.

Semiconductors in equilibrium: electron and hole statistics in intrinsic and extrinsic semiconductors; metal-semiconductor junctions; Ohmic and rectifying contacts; PN diodes, bipolar junction transistors, field effect transistors; negative and positive feedback circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and sequential circuits, flip-flops, timers, counters, registers, A/D and D/A conversion.

Theme 4: Thermodynamics and Statistical Physics (Weightage 17 %)

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Theme 5: Atomic, Molecular, Nuclear and Physics (Weightage 17 %)

Spectra of one-and many-electron atoms; spin-orbit interaction: LS and JJ couplings; fine and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transitions in diatomic molecules, Franck-Condon principle; Raman effect; EPR, NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.

Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semi-empirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model; conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance.

References:

- 1. David J. Griffiths, Introduction to Electrodynamics. Third Edition, Prentice Hall-2005, P.1-596
- 2. Goldstein Herbert, Classical Mechanics. Third Edition, Addison Wesley-1980, P.1-646
- David J. Griffiths, Introduction to Quantum Mechanics. Second Edition, Pearson Education, Inc.-2005, P.1-484.
- 4. RK Puri and VK Babbar, Solid State Physics, S. Chad. Publisher, New Delhi 2008.
- 5 Arthur Besier, Fundamental of Physics with Applications. Fofth Edition, Tata McGraw-Hill-2011.
- 6. Arthur Beiser, Concept of Modern Physics. Sixth Edition, McGraw-Hill-2003, P. 1-556.
- 7. F Rief. Fundamental of statistical thermal physics, McGraw-Hill, New York, 1965.
- 8. Raj Kumar, Atomic and molecular spectra, Fifth edition, 2019
- 8. K. Thyagarajan and Ajay Ghatak, Lasers: Fundamentals and Applications, Laxmi Publications 2011